To Vertex Operator Algebras

نویسنده

  • YI-ZHI HUANG
چکیده

In this exposition, we continue the discussions of Dong [D2] and Li [L]. We shall prove an S3-symmetry of the Jacobi identity, construct the contragredient module for a module for a vertex operator algebra and apply these to the construction of the vertex operator map for the moonshine module. We shall introduce the notions of intertwining operator, fusion rule and Verlinde algebra. We shall also describe briefly the geometric interpretation of vertex operator algebras. We end the exposition with an explanation of the role of vertex operator algebras in conformal field theories. I would like to thank Masahiko Miyamoto for inviting me to this successful conference and James Lepowsky for helpful mathematical comments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras

If a vertex operator algebra V = ⊕n=0Vn satisfies dimV0 = 1, V1 = 0, then V2 has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set Symd(C) of symmetric matrices of degree d becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, cen...

متن کامل

Framed vertex operator algebras, codes and the moonshine module

For a simple vertex operator algebra whose Virasoro element is a sum of commutative Virasoro elements of central charge 1 2 , two codes are introduced and studied. It is proved that such vertex operator algebras are rational. For lattice vertex operator algebras and related ones, decompositions into direct sums of irreducible modules for the product of the Virasoro algebras of central charge 1 ...

متن کامل

Local and Semilocal Vertex Operator Algebras

We initiate a general structure theory for vertex operator algebras V . We discuss the center and the blocks of V , the Jacobson radical and solvable radical, and local vertex operator algebras. The main consequence of our structure theory is that if V satisfies some mild conditions, then it is necessarily semilocal, i.e. a direct sum of local vertex operator algebras.

متن کامل

ar X iv : q - a lg / 9 50 40 17 v 1 2 4 A pr 1 99 5 Introduction to vertex operator algebras I

The theory of vertex (operator) algebras has developed rapidly in the last few years. These rich algebraic structures provide the proper formulation for the moonshine module construction for the Monster group ([B1-B2], [FLM1], [FLM3]) and also give a lot of new insight into the representation theory of the Virasoro algebra and affine Kac-Moody algebras (see for instance [DL3], [DMZ], [FZ], [W])...

متن کامل

Introduction to vertex operator algebras II

This is the second of three lectures on introduction to vertex operator algebras. In this lecture, we shall continue Professor Dong’s lecture to present more fundamental properties of vertex operator algebras. From the mathematical point of view, a vertex operator algebra formally resembles a Lie algebra because the Jacobi identity is used as one of the main axioms. For the Lie algebra aspect o...

متن کامل

Regularity of rational vertex operator algebras

Rational vertex operator algebras, which play a fundamental role in rational conformal field theory (see [BPZ] and [MS]), single out an important class of vertex operator algebras. Most vertex operator algebras which have been studied so far are rational vertex operator algebras. Familiar examples include the moonshine module V ♮ ([B], [FLM], [D2]), the vertex operator algebras VL associated wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995